
.•.-•■«-•• .w • ■-.:'.:.■_■_ _ ,■'•■••.,•■- - ■- ■■■- ^ ■.<. - -•?;-- ■• ■■ ■••'<■ V....J-.

CAR-TR-Sfi
CS TR-3*2-1

X0001-4-95-1-0521 f
Aususi 1997 f- 1;

Knowledge-Based Control of \ lsion Systems

fChandra Shokliar iSabine Moisan iRc.ei:- Vincent
f Philippe Riirlina iRaina Chellappa

f Center for Automation Re.-earch
1 niversit v of Marvlan'!

College Park. Ml) 'L'OT-IJ

I 1NR1A Sophia-Antipoi:.-
2004 Route des Luciole-

Sophia-Antipole Cedex. Irance

fc«rR'

CAR-TR-867 N00014-95-1-0521
CS-TR-3824 August 1997

Knowledge-Based Control of Vision Systems

{Chandra Shekhar jSabine Moisan jRegis Vincent
fPMlippe Burlina jRama Chellappa

f Center for Automation Research
University of Maryland

College Park, MD 20742

t INRIA Sophia-Antipolis
2004 Route des Lucioles

Sophia-Antipolis Cedex, France

Abstract

We propose a framework for the development of vision systems that incorporate, along with
the executable programs, the syntactic, semantic and strategic knowledge required to obtain
optimal performance. In this approach, the user provides the input data, specifies the vision
task to be performed, and then provides feedback in the form of qualitative evaluations of
the result(s) obtained. These assessments are interpreted in a knowledge-based framework
to automatically select algorithms and set parameters until results of the desired quality are
obtained. In this manner the vision system is given the capacity to tune itself for optimal
performance. A system thus trained on a small subset of the input data can then be run
autonomously on the remaining data in a batch mode. This approach is illustrated on two real
applications, analysis of Synthetic Aperture Radar (SAR) imagery, and detection of vehicles in
aerial photographs.

The support of this research by the Office of Naval Research under Grant N00014-95-1-0521 is gratefully
acknowledged.

1 Introduction

Vision systems 'used in challenging operational environments should satisfy the conflicting re-

quirements of flexibility and convenience. Flexibility is the ability to accommodate variations

in operating conditions. Convenience pertains to the ease of operation of the system by a user

who is not familiar with the technical details of the algorithms employed.

Variations in image characteristics are caused by a number of factors such as weather,

lighting conditions and image acquisition parameters. A vision system should accommodate a

reasonable amount of such variation, and should degrade gracefully as the image characteristics

deviate from the ideal. Once can allow for such variations by providing alternative algorithms

for each task, as well as tuning parameters for each algorithm. In most cases, a judicious

choice of algorithms and parameters provides results of acceptable quality under a wide range

of operating conditions.

Vision systems in the real world are often utilized by users who, while competent in the

visual analysis of images, may not be familiar with the technical details of the algorithms they

employ. It is not reasonable to expect the user functioning in an operational situation to select

and tune the algorithms for the task (s)he is required to perform. This function is best left

to the designer (the vision specialist) who may not be available during the system's operation.

It is thus obvious that a vision system that provides flexibility in the choice of algorithms and

parameter values may not be very convenient for the user to utilize.

In order to achieve the conflicting goals of flexibility and convenience, we propose a knowledge-

based framework to partially or fully automate the reasoning employed by the vision specialist

in obtaining satisfactory results from the system. The proposed framework is implemented

using the LAMA platform [13, 20]. The original vision algorithms are semantically integrated

into this framework. The integrated system, shown schematically in Fig. 1, can then be made

available to the user. This type of system is capable of self-tuning, i.e. adapting to changes

in data characteristics and performance requirements with minimal external intervention. Any

interaction with the user is in terms of qualitative evaluations of results, and not in terms of

algorithms and parameters. In many situations, the same processing task is performed on a

large data set consisting of hundreds or even thousands of images. In such cases, the system

can be interactively tuned on some representative images, and once satisfactory performance is

achieved, can then be used with fixed settings for batch processing of the remaining images in

the data set.

The organization of this paper is as follows. Section 2 briefly reviews related work. Sec-

tion 3 discusses the basic concepts of knowledge-based control. Section 4 presents the LAMA

platform. In Sections 5 and 6, results of applying our methodology to two candidate applica-

tions (Synthetic Aperture Radar (SAR) image analysis and vehicle detection in aerial imagery)

are presented. These applications, developed at the University of Maryland, were selected

firstly because they address interesting and non-trivial problems, and secondly because their

developers were available to provide the required expertise, indispensable for constructing the

stages of processing

a
■

■
■

tuning parameters

knowledge^
base

1 parameter values f algorithm choices

control module

Results

User feedback

Figure 1: Architecture of a self-tuning vision system. The vision system has a number of stages

of processing, with different possible algorithm choices at each step. Each algorithm may have

one or more tunable parameters. The user evaluates the result(s) of processing, and the control

module uses this feedback to change algorithms or parameters in order to improve the results.

knowledge bases. The final section contains the conclusions resulting from our work, as well as

a list of areas for further investigation.

2 Previous work

As vision algorithms and systems have grown in power and complexity during the past few

decades, there has been a corresponding growth in software platforms tailored to vision system

development. Traditional methods range from graphical script generators, to vision toolkits,

to object-oriented protocols for data and program interchange. The emphasis is on abstracting

the types of objects and computational geometries used in image understanding into useful

programming constructs [12]. One of the objectives is to enable the rapid design of algorithms

using a tool-box of pre-existing constructs, and prototyping of longer processing chains by

linking simpler elements together. The user is often provided with a visual programming en-

vironment (VPE), which enables him or her to mix-and-match between the available methods.

For the most part, these systems offer only syntactic integration of vision programs. They pro-

vide a means to integrate code and usage syntaxes, but do not provide a means to incorporate
further knowledge about the programs.

Knowledge-based techniques can be used in various ways in the development of vision sys-

terns. For an excellent survey of this topic, see [6]. Knowledge-based systems, also known as

expert systems, have been traditionally used for the high-level interpretation of images, and

for specific vision tasks such as segmentation (e.g. [14]). They incorporate mechanisms for

the spatial and temporal reasoning that is characteristic of intermediate- and high-level image

understanding. These knowledge-based systems are tailored towards specific tasks, and are

usually not generalizable to other tasks.

The work presented in this paper is different from the above two approaches (syntactic

integration systems and expert systems for specific vision tasks) in the sense that it proposes

a general-purpose framework for knowledge-based control of vision systems. The approach can

be used to develop knowledge-based semi-autonomous systems for any vision application. This

is a continuation of the work reported in [5, 17].

Some of the early work with a similar motivation is reported in [8, 18, 11]. More recently,

this problem has been addressed in the context of the VIDIMUS project [1], with the aim of de-

veloping an intelligent vision environment for industrial inspection. A knowledge-based system

(VDSE) was built within this environment, which can automatically configure a vision system

for a given inspection problem. The automatic generation of an image processing script based

on a user request and a knowledge-based model of an application domain is addressed in [4].

In [7] vision algorithm control is modeled as a Markov decision problem. This model is used to

automatically assemble object recognition programs from existing vision algorithms. In [15, 16]

a context-based vision paradigm is proposed, where the basic aim is to use contextual informa-

tion to select methods and parameters in a vision application. The authors emphasize the need

for explicitly encoding semantic knowledge about vision algorithms such as assumptions about

their use and their inherent limitations. The use of contextual information derived from site

models to construct control patches for the self-tuning of vision algorithms is discussed in [2].

3 Knowledge-based control

In a typical vision application, a number of stages of processing are involved in going from the

raw input data to the final result, as shown in Fig. 1. Typically, at each stage of processing

a number of alternative algorithms can be employed. Each of these algorithms, in turn, may

have one or more tunable parameters. These parameters may be continuously variable, or may

take discrete sets of values. Often, due to uncertainty in the data and in the problem model,

it is not possible to predict beforehand if a given algorithm sequence will produce the desired

result for a certain parameter setting. It may be necessary to start with a rough guess as to

the parameters, execute the algorithm sequence, examine the results, and if necessary, modify

the parameter values or the selection of algorithms, and repeat the procedure until results of

the desired quality are obtained.

In this section, we examine the types of knowledge used by a vision specialist (and therefore

required for knowledge-based control), and the implications for the design of self-tuning vision

systems.

3.1 Smart modules

From a problem-solving perspective, the task of solving a vision problem using a given set

of algorithms involves three types of knowledge: syntax, semantics and strategy. Syntactic

knowledge is information about input and output data types and formats, input parameters,

command-line arguments, etc. Information such as memory required may also be considered

as syntactic knowledge. Semantic knowledge is the vision specialist's expertise about the char-

acteristics of the algorithms, result evaluation, assembly of algorithms for a given task, etc.

Strategic knowledge pertains to the high-level decisions that should be made about result eval-

uation (by the system, by the user, or not at all) and failure handling (repair failure at the

current module or at another place in the chain of processing, repair failure by parameter tuning

or by algorithm reselection, etc.).

The objective of knowledge-based control is to provide a suitable framework for "packaging"

algorithms using the three types of knowledge described above. Conceptually, as shown in

Fig. 2, raw programs are wrapped with layers of syntactic, semantic and strategic knowledge

to form "smart" modules. This is done in a recursive fashion for more complex tasks—smart

modules can be connected sequentially (Fig. 3), in parallel (Fig. 4), or selectively (Fig. 5), and
the ensemble is then re-wrapped.

strategic wrapper
semantic wrapper

syntactic wrapper

"raw" program or "smart" module hierarchy

V o specifications (data, parameters, formats)

command-line syntax

characteristics sub-module selectic

parameter tuning result evaluation

n

failure handling strategy (local or nonlocal)
operating mode (specialist or user)

interactive or autonomous functioning

Figure 2: Packaging a vision algorithm into a "smart" module. A "raw" executable program

is not useful to anyone except the speciahst who designed and implemented it. In order for

another person, particularly a non-specialist, to use the program, it must be accompanied by

some knowledge about how to run it, how to evaluate its results, how to tune it, etc. Smart

modules can themselves be connected in various ways and re-packaged for more complex tasks.

Module 1

Module 1.1 —► Module 1.2 — - -^ Module 1.n

Figure 3: A module with a sequential decomposition into sub-tasks. Execution of Module 1

implies sequential execution of Modules 1.1 through l.n.

Module 1

Module 1.1

and

Module 1.2

and

and

Module 1.n

Figure 4: A module with a parallel decomposition into sub-tasks. Execution of Module 1 implies

execution in parallel of Modules 1.1 through l.n.

Module 1

Module 1.1

or

Module 1.2

or

or

Module 1.n

Figure 5: A module with different possible realizations. Execution of Module 1 implies the
execution of one of Modules 1.1 through l.n.

3.2 Self-tuning

Self-tuning is the ability of the vision system to select the appropriate algorithms and parameter

values based on the input data, contextual information, and feedback from the user in the form

of result evaluations. In most cases, the selection of algorithms may be performed, before any

data processing has taken place, based on the contextual information alone [15]. Parameter

tuning, on the other hand, is dependent on the characteristics of the specific data set. It has to

be interleaved with the processing of the data, based on the operator's evaluation of the results.

Consider a vision system A composed of m stages, with n,- parameters in the ith stage:

A = AlA2...Ai...Am

where each A, is of the form

Ai = Ai(pi1,Pi2,...,Pini)

As shown in Fig. 6 the entire vision system can be regarded as consisting of a single algorithm

A(PI,P2,---,PN)- The N parameters that tune this "black box" algorithm are the YT=ini

parameters of the m individual stages. We refer to a specific setting of these JV parameters

as an operating point (OP). We define an acceptable operating point as a parameter setting

that yields satisfactory performance for the given data set. Our basic assumption is that there

exists at least one acceptable operating point (or, in the case of continuous-valued parameters,

operating region). In general, the default parameter setting will not be an acceptable one. The

Pi P2 ^ Rl^1 V 'En:

r11
r _H
P12 Pl^ P2fP22 P2n

w w w v V V

PJP.
rnw pi mi m2 rmn

A1 A2 Am

1 * 1

Figure 6: A simplified black-box model of a vision system consisting of stages Ax-Am. The

parameters of the individual modules become the parameters of the black box.

objective, then, is to be able to find an acceptable OP for the given data set in an efficient

manner. If each parameter pi has k{ possible values, the total number of parameter settings

is Yliki. An exhaustive search of the JV-dimensional parameter space may therefore be too

computationally expensive. Further, it is bound to be extremely tiresome for the user who has

to evaluate the results at each step and provide feedback. This is where a knowledge-based

approach is applicable. A vision specialist employs a problem-solving strategy consisting of

heuristics, rules of thumb, etc., which effectively help him or her find a short cut ("tuning

path") to an acceptable operating point, as shown in Fig. 7, without having to explore the

entire parameter space. The strategy employed by the specialist has to be integrated into the

vision system to give it a self-tuning capability.

' parameter space"

acceptable-operating region

0
1 tuning path

default setting _/

Figure 7: Parameter tuning viewed as a search for an acceptable operating point in the pa-

rameter space. A parameter setting chosen from the acceptable operating region results in

satisfactory performance of the vision system. One of the basic goals of vision algorithm con-

trol is to reach an operating point within this region.

8

3.3 Modes of operation

Any vision task A can be hierarchically decomposed into a set of subtasks Ai-Am, each of

which (say A;) may be decomposed further into subtasks Aix-Aimi and so on. For instance, a

typical vision system may consist of a top-level module A, consisting of sub-modules Ax and

A2, and these may be composed of elementary subtasks An, A12, A2X, and A22. In our model,

attached to each (sub)task A... at any level in the hierarchy is a strategy T.. which contains

all the specialist's knowledge about the module: how/when it should be used, how to evaluate

its performance, and how to adjust it if improved performance is required. Depending on the

strategies available, this type of a system can function in one of two modes: the specialist mode
or the user mode.

In the specialist mode, shown in Fig. 8, all the strategies at every level of the hierarchy are

available. In other words, results at every stage, including the intermediate ones, are available

for evaluation by the specialist. This is applicable to the test phase when the specialist is

in the process of testing the functioning of the system. In the user mode, shown in Fig. 9,

only the top-level strategy T is directly available and only the results of the final stage are

available for evaluation by the user. This mode is designed for the operational phase. From a

control-theoretic viewpoint, a self-tuning vision system can be regarded as a closed-loop system

where the observer is the user, who provides feedback in the form of result evaluations. This

feedback can be either at the highest level (corresponding to the user mode), or at all levels
(corresponding to the specialist mode).

input
A11

I
A1

A12

■W

T11
£

!-*•

i:
A21

A2

i
A22

T12

T1

T21

Z

output

T22

repair
T2

evaluation

Figure 8: Specialist tuning mode for a three-level vision system. The results of the modules A,

Ai, A2 and An-A22 and the corresponding strategies T, Tu T2 and Tu-T22 are available.

In the specialist mode, the availability of intermediate results enables linear planning for

the fine-grain local optimization of algorithms. The user mode, however, necessitates the use of

input
A11

T11

A1
A12 A21

A2
A22

output

m*m
T12

••^

T1

transmission^^

&Ö
T21 T22

-^
repair T2

evaluation

Figure 9: User tuning mode for a three-level vision system. Only the results of the top-level

module A and the corresponding strategy T are directly available. The strategies Ti, T2 and

T11-T22 are available only indirectly through message transmission.

more complex reasoning, since only the final result is available, based on which any algorithm

at any stage of the processing may have to be retuned.

3.4 Result evaluation

In the user mode, the vision system is tuned based on the evaluation of results by the user. We

can define two types of result evaluation: general and specific. General evaluation consists of

qualitative global judgments about algorithms and results ("too many false alarms", "too many

missed detections at road intersections", etc.). Specific evaluation, on the other hand, pertains

to particular objects or regions in the result ("this airplane is a false alarm", "this portion of the

image contains too many false alarms", etc.). It can be qualitative or quantitative in nature.

An example of each type of evaluation is shown in Fig. 10.

Both types of evaluation have their advantages and drawbacks. Specific evaluations are

simple, intuitive, and precise. The user is not expected to make any detailed analysis of the

results. Further, for certain applications such as target detection, specific evaluations provide

a very rich form of feedback to the control engine. However, they are difficult to deal with in a

general-purpose framework, since they require mechanisms for reasoning and for user interaction

that are application-dependent. This makes separation of the application from the knowledge

base more difficult. General evaluations are of a more complex nature than specific evaluations,

since they require more detailed feedback from the user on the types of errors present in the

output. However, they are more suitable for a general-purpose framework, since they do not

require any special interaction or reasoning mechanisms, and are relevant to all types of vision

10

darker vehicles missed
dark portions of vehicles ignored
false alarms near lane markings
longitudinally close vehicles merged

GENERAL EVALUATION

wrong
size alarms

Issed
detections

SPECIFIC EVALUATION

Figure 10: Example of the two types of result evaluation. The application here is the detection

of vehicles in an aerial image. The user can provide feedback either in the form of general

remarks about the overall result, or in more specific terms.

problems. In this paper, we deal primarily with general evaluations.

4 The LAMA platform

LAMA is a methodology as well as a general-purpose platform for developing intelligent appli-

cations, consisting of a kernel library, a knowledge base description language called YAKL (Yet

Another Knowledge-base Language), verification and validation (V & V) facilities, a graphical

user interface and other tools, as shown in Figure 11. A complete description of LAMA is

beyond the scope of this paper; the interested reader is referred to [20]. For our purposes,

LAMA may be viewed as an architecture based on frames and rules for encapsulating the

problem-solving knowledge of the vision specialist.

A vision application developed using LAMA consists of a set of pre-existing algorithms

(also referred to as programs, modules or methods), a knowledge base (KB) on using these

algorithms, and a control (supervision) engine. A vision functionality is the abstract represen-

tation of a vision task. It is realized in a concrete form by one or more operators corresponding

to it. An operator may be either simple, corresponding to an executable program, or composite,

represented by a predefined skeletal plan. A skeletal plan describes a network of connections

between operators (choice, sequence, repetition, etc.) for realizing a given functionality. The

description of an operator contains information about its arguments (name, type, range, default

11

LAMA

Figure 11: The LAMA platform

values, etc. of the input data, output data and parameters), semantic information about its

applicability (in the form of pre- and post-conditions), as well as criteria for parameter initial-

ization, result evaluation, etc. For operators corresponding to real executable programs the

calling syntax is also provided. The structure of operators is shown in Fig. 12.

The functioning of the control engine (Fig. 13) can be decomposed into a number of phases:

planning and execution of programs, evaluation of the results, and repair, as shown in Fig. 13.

The planning step first builds a plan, or part of a plan, which is then executed. The results of

execution are then assessed in the evaluation step. If the assessments are positive, the planning

process continues. If failures are detected, the repair step invokes the appropriate remedial

measures which may either result in re-execution or re-planning of any part of the hierarchy.

The planning, evaluation and repair steps are discussed in greater detail in the following sections.

4.1 Planning

The basic planning mechanism used is hierarchical script-based planning. A plan is a set of

steps to attain the desired vision objective. It is similar to the block schematics often used in

the design of signal processing algorithms, but is different in two ways:

(a) Plan hierarchy: each "box" in the plan can be a complex vision task, with its own plan,

(b) Plan abstraction: the components of the plan represent abstract vision tasks, and not specific

algorithms or programs. During execution, choice rules are used for selection of the operator

best suited for the task at hand. They are of the form:

if

the data have property x

AND context field f has value y

AND the request has a constraint z

then

choose an operator with characteristic b

12

Operator
Functionality
Characteristics
Input data
Tunable parameters
Output data
Preconditions
Postconditions

Terminal Operator
Functionality
.... 1 common part

Postconditions

Calling syntax \ specific part

Rule
bases

parameter initialization rules
parameter adjustment rules
result evaluation rules
repair rules

Complex Operator

Functionality

Postconditions
common part

Decomposition into suboperators
(sequential, parallel, alternative) >
Data flow specific part

parameter initialization rules
choice rules
result evaluation rules
repair rules

Figure 12: Structure of operators in LAMA. There are two types of operators, simple and com-

plex. Simple operators are "packaged" forms of executable programs, while complex operators
have an associated decomposition.

Planning plan Execution

repair
actions

Repair

Y
results

 success<-

^ failure -^
User feedback
(evaluation)

Figure 13: Control strategy

13

AND do not choose operator w

(The above example shows only some of the possible types of premises and actions in a choice

rule. Many other types of premises and actions are possible, for choice rules as well as for the

three other kinds of rules described later.)

Once an operator is selected, it is initialized using initialization rules, of the form:

if

the data have property x

AND context field f has value y

then

set parameter p to value f(y)

4.2 Evaluation

The performance of an operator is analyzed using evaluation rules, which are of the form:

if

the output does not satisfy criterion c

then

judge plan entity to have some quality

declare failure

The "plan entity" could be the current operator, a result of processing, or in general, any

plan element in the hierarchy. Many other types of evaluation are possible, using information

about the previous evaluation, about the number of times the operator has been (unsuccessfully)

executed, about whether the result is better or worse than before, etc.

4.3 Repair

Failure handling in LAMA is performed either locally inside the operator, or nonlocally by

message transmission to another part of the plan.

Local failures are handled by parameter tuning using repair aiLdadjustment rules. A repair

rule for local failure-handling is usually very simple, of the form:

if

true

then

re-execute

14

When this rule is applied, the operator is re-executed, invoking one or more adjustment
rules of the form:

if

result r has quality q

then

adjust parameter p using method m

When the failure of the current operator is caused by the (undetected) failure of another,

the repair strategy employs message transmission from the current operator to the offending

one. The repair rule in this case is of the form:

if

result r has quality q

then

send message m to operator o

The control then switches to operator o, whose failure-handling strategy is then activated,

based on the message m that has been sent to it.

4.4 Integrating an application into LAMA

Vision applications typically consist of a number of executable programs with associated syn-

tactic, semantic and strategic knowledge, as described in Section 3.1. The mechanisms for

planning, evaluation and repair provided by LAMA enable us to package a given vision system

into an ensemble of smart modules, enabling the user to obtain optimal performance with min-

imal intervention. A knowledge representation language, YAKL, is employed for this purpose.

Mechanisms are provided to test the consistency of the knowledge base thus created [20]. A

number of different control engines are available for running the integrated application. In our

work, we use the PEGASE engine [21] which provides hierarchical and skeletal-based planning

interleaved with control of execution. A GUI is provided for examining the knowledge base as

well as for monitoring the application during execution.

The following two subsections describe how to build a LAMA/PEGASE knowledge base

(KB) for an application, and how to run the integrated application.

Building a knowledge base

The first step is the construction of a set of skeletal plans for the application. A plan consists

of an operator hierarchy, where the top-level operator solves a given vision task. The task

performed by this operator is then recursively decomposed into sub-tasks, each with an associ-

ated complex or simple operator, until the lowest levels of the operator hierarchy contain only

15

simple operators. Complex operators have an operator decomposition associated with them,

whereas simple operators specify the calling syntax of the associated program. A goal instance

is created corresponding to the top-level operator functionality.

The next step is the creation of the rules which express the strategy of the specialist in

executing a plan. The LAMA architecture enables the systematic expression of the "rules of

thumb" and "approximate reasoning" which are crucial to successful problem-solving. This is

done by means of the five types of rules discussed earlier. A mixture of numeric and symbolic

reasoning may be needed for all four types of rules. Choice rules, being the simplest, are

defined first. They use the values of context fields, data definitions, constraints in the request,

etc. to select an operator from among the choices available. Initialization rules are defined

next. These may be somewhat more difficult, in that they have to formalize the "rough initial

guesses" that the specialist makes before starting an vision task. Adjustment rules are then

defined for operators which have adjustable parameters. Step sizes for parameters have to be

carefully chosen so that the change in the behavior of the algorithm is neither too sudden nor

too gradual. Then evaluation rules are defined. This is a rather difficult task, since the question

"Are the results good enough?" is often subjective, and appropriate quality measures may not

be readily available. However, a close examination of the specialist's strategy often reveals

hidden reasoning capable of being expressed in concrete terms as evaluation rules. Finally, the

repair rules are defined. These rules determine the overall failure-handling strategy, and are

crucial to the success of the application.

Running an application in LAMA/PEGASE

The solving of a problem starts with the creation of a request, which states the functionality,

the data on which this is to be achieved, and the context in which the problem is being solved.

Using choice rules, the available operators for the functionality are rank-ordered. The best

operator is selected, and executed on the given data after the operator's initialization rules

have been applied. If the operator is a simple one, this corresponds to the execution of the

corresponding program. If it is a composite one, requests for its sub-tasks are created, and

a tree of requests is created. Requests are chosen from this tree and executed depending on

their sequencing. If the mode of execution control calls for it, the results of executing a request

are judged using evaluation rules, and in the event of a failure, either the same operator is

re-executed after its parameters have been adjusted using the relevant rules, or the next best

operator is applied. In the event of successful execution, the next request in the tree is selected

for execution. This continues, and the execution terminates when the tree of requests is empty.

The next two sections illustrate our approach using two real applications. The first ap-

plication, Synthetic Aperture Radar (SAR) image analysis, illustrates the specialist mode of

self-tuning, while the second application, vehicle detection, illustrates the user mode.

16

5 Example: SAR Image Analysis

This application is based on the work of Kuttikkad and Chellappa [9]. Its goal is to analyze

a SAR image to identify semantic objects such as targets, buildings, roads, and trees, and to

segment the remaining parts of the image into various categories such as grass, water and bare

ground. The first step is the detection of regions of high backscatter using a Constant False

Alarm Rate (CFAR) technique [9]. In the next step non-target pixels in the image are classified

as grass, tree, bare ground, road or shadow using a Maximum Likelihood (ML) approach.

Training data obtained from other images of similar scenes is employed. This is a preliminary

classification, using no high-level information whatsoever. A large percentage of the pixels are
likely to be misclassified.

Shadow regions are detected and then eroded and grown using morphological operations.

The same is done for pixels classified as road. Very small regions of either class are eliminated,

and the rest are grouped into homogeneous regions. Shadow regions that are adjacent to a bright

streak (in the CFAR output) towards the sensor are classified as building shadows. Roads are

verified using a shape/size criterion. ML segmentation is then repeated for pixels previously

misclassified as road and shadow, this time classifying them as grass, bare ground or trees. Tree

regions are grown using morphological operations, and verified using a size argument, as well

as by the presence of adjoining shadow regions away from the sensor. In the CFAR output,

streaks corresponding to buildings are eliminated, and the remaining target pixels are grouped

into clusters. In the final step, ML segmentation is repeated, and based on the previous steps,

pixels misclassified as shadow, road or tree are re-classified into grass or bare ground.

Examples of results obtained by the approach are shown in Fig. 14.

Knowledge base

The hierarchy of operators for this application is shown in Fig. 15. The knowledge base consists

of the following major components: 21 operators (13 simple and 7 complex), 18 sequential and

2 choice links, and a total of 29 production rules (2 choice, 10 initialization, 6 evaluation, 6

adjustment and 5 repair). The complete knowledge base will not be described in detail in this

paper. Instead, some simple examples from the KB are presented to give the reader a feel for

the kinds of objects and reasoning involved in a real application.

An example of a complex operator is shown in Fig. 16. The functionality is road verification,

which verifies road hypotheses obtained by pixel classification and region growing. This operator

has a decomposition into a choice between two simple operators, one of which is shown in Fig. 17.

The choice rules for deciding which operator to select are shown in Fig. 18. The reasoning is

as follows: in rural areas, roads are likely to have longer unbroken stretches, whereas roads in

urban areas have many intersections. Hence an operator for verifying road hypotheses in rural
areas should use length as a criterion.

The rules for initializing the parameter "PEA" (probability of false alarm) for the operator

"o-cfar" are shown in Fig. 19. This operator is used to detect targets in a SAR image. The

17

road region extraction

0) >
■o a o

n n

^v. -

^

;# <$>, .

^~, " •, ^
'•

Figure 14: Examples of results of SAR image analysis.

18

SAR image understanding

target
detection

CFAR CFAR «Hering
detection refinement

preliminary
segmentation

target
verification

final
segmentation

streak filtering grouping
removal

shadow
detection

building
detection

road
detection

tree
detection

ML shadow
segmentation growing

streak
detection

building
verification

road
extraction

EQ

road
verification

ML road region
segmentation growing

road road
verification verification

(length-based) (support-based)

Figure 15: Operator hierarchy for SAR image analysis.

19

Complex Operator {
name : verify-roads

comment : "verify road hypotheses obtained from the previous steps'

Functionality : road-verification

Input Data
PGH-Image name : road-region-image

comment : "Binary PGM image file with black road areas"

Output Data
PGM-Image name : road-image

comment : "Output PGM image file for storing detected shadows"

Preconditions
valid road-region-image

Postconditions
valid road-image

Body

verify-road-1 OR verify-road-2 ;

Choice criteria

Data Flow

verify-roads.road-region-image/verify-road-1.road-region-image
verify-roads.road-region-image/verify-road-2.road-region-image
verify-roads.road-image/verify-road-2.road-image
verify-roads.road-image/verify-road-1.road-image
>

Figure 16: Example of a complex operator

20

Terminal Operator { name : verify-road-1
comment : "Extended fill"

Functionality : road-verification

Input Data
PGM-Image name : road-region-image

comment : "Binary PGM image file with black road areas"

Input Parameters
Float name : aspect

comment : "Aspect ratio threshold for road segments"
default : 2.

Float name : fill-ratio
comment : "Fraction fill of bounding rectangle for valid road"
default : .6

Integer name : min-road-length
comment : "min road length in pixels"
default : 25

Output Data
PGM-Image name : road-image

comment : "Output PGM image file for storing detected shadows"
1-0 relations :
road-image.path := road-region-image.path,
road-image.basename := road-region-image.basename,
road-image.extension := ".roads"

Preconditions
valid road-region-image

Postconditions
valid road-image

Call
language : shell
syntax : rdtwo road-region-image.get-filename road-image.get-filename

-a aspect -r fill-ratio -1 min-road-length
program name : rdtwo

}

Figure 17: Example of a simple operator

21

Rule
name : ch-verify-road-1
comment : "Roads in rural areas have longer unbroken stretches,

since there are fewer intersections"
if

then
context.scene-type == rural

use-operator-of-characteristic length-based

Rule
name : ch-verify-road-2

if

then
context.scene-type == urban

use-operator-of-characteristic support-based

Figure 18: Examples of choice rules

Rule
name : init-PFA-1
comment : "Initialize PFA heuristically"

if
context.noise == 'low

then
PFA :=.001

Rule
name : init-PFA2
comment : "Initialize PFA heuristically"

if

context.noise == 'high
then

PFA := .0001

Figure 19: Examples of initialization rules

parameter PFA is a threshold which determines the number of bright pixels that are classified

as target pixels. The higher the PFA, the more likely it is that a given pixel is classified as a

target pixel. The rules for evaluating this operator are shown in Fig. 20. The user is asked

to judge if the results of target detection are satisfactory. If not, appropriate action is taken

via adjustment rules, such as shown in Fig. 21. An example of the entire chain of reasoning is
shown in Fig. 22.

6 Example: Vehicle detection

The methodology discussed in Section 4 has also been applied to the detection of vehicles in

aerial imagery. We have used a simplified version of the Vehicle Detector developed at the Uni-

versity of Maryland [3], which detects and approximately localizes vehicles of a specified size and

22

Rule
name : ev-target
comment : "Ask the operator to judge if

the number of target pixels looks ok"
if

then
true

assess-data-by-user cfar-image
(num-target-pixels-correct num-target-pixels-too-low

num-target-pixels-too-high)

Rule
name : ev-target2
if

then
not assess-data? cfar-image num-target-pixels-correct

assess-operator failed repair

Figure 20: Examples of evaluation rules

Rule
name : adj-PFA-1
comment : "If # target pixels is too low, increase PFA'

if
assess-operator? detect detect-PFA-too-low

then
adjustment-method PFA percent-float,
adjustment-step PFA 400,
increase PFA

Rule
name : adj-PFA-2
comment : "If # target pixels is too high, reduce PFA"

assess-operator? detect detect-PFA-too-high
if

then
adjustment-method PFA percent-float,
adjustment-step PFA 80,
increase PFA

Figure 21: Examples of adjustment rules

23

rule init-PFA-1 is applied

i
operator o-target

with parameter
PFA = 0.001

rule eval-target is applied

T
user dialog

nuim-target-pixels

correct
rf^ too-low ok

too-high cancel

1
rule adj-PFA-1 is applied

operator o-target
with parameter

PFA = 0.005

* 2 ' , *"
/*■

■xte

4P*»
" L X- *v J *

* *= V >

ft
• *

.'S

1. t.

Figure 22: Example of the reasoning used by the control engine. The initial choice of the

parameter PFA is 0.001. The operator is executed, and the user examines the result and judges

the number of target pixels to be too low. The parameter is then adjusted to 0.005, and the
operator is re-executed.

24

orientation. Our objective here is to demonstrate the application of the approach presented in

this paper to a simple existing vision application. We do not attempt to improve on the underly-

ing application itself in any way. The main stages of processing, shown in Fig. 23, are as follows.

preprocessing hypothesis
generation

edge image

C"-^ if

hypothesis
validation

Figure 23: A simplified version of the UMD vehicle detector. The input is an aerial image.

Contours are extracted, and vehicle hypotheses are generated. These hypotheses are then

validated to obtain the final result.

Preprocessing: Edge pixels are extracted using the Canny edge detector. Both gradient magni-

tude and gradient direction are computed.

Hypothesis generation: A modified generalized Hough transform (GHT) is used to locate areas

corresponding to centers of candidate vehicles. Edge pixels vote for all possible centers of ve-

hicle contours which contain the pixel. The votes are collected in an accumulator array, and

thresholded. The result is a set of hypothesized vehicle centers. Local "rubber-band" con-

tour matching is subsequently applied to reject candidate vehicles which do not have sufficient

support boundaries on both sides of the vehicle.

Hypothesis verification: This stage resolves spatial conflicts (overlaps) between vehicle hypothe-

ses. This is done in three steps. In the first step, the conflict resolution is done purely on the

basis of the distances between the centers of candidate vehicles. If two candidate vehicles are

closer than a certain fraction of their width, the one with the greater boundary support is

retained. The second step uses the size of the overlap area between two conflicting vehicles as

a criterion for rejecting the weaker vehicle. In the final step, the longitudinal distance between

adjacent vehicles lying on the same axis is used as a filtering criterion.

25

6.1 Knowledge base

The operator hierarchy for the vehicle detector is shown in Fig. 24. The knowledge base is under

development. Currently, it consists of 13 operators (4 complex and 9 terminal), 10 sequential

operator links, two choice links, and a total of 37 rules (2 choice, 1 initialization, 11 assessment,

8 adjustment and 15 repair). As the knowledge base for this application is developed further,

the number of operators is expected to increase only slightly, whereas the number of rules is

expected to increase considerably.

vehicle detection

preprocessing

smoothing edge
detection

hypotl
generation

hypothesis
verification

generalized rubber-band spacing overlap position texture
Hough transform template matching check check check check

Figure 24: Operator hierarchy for the UMD vehicle detector.

6.1.1 Evaluation and repair strategies

As in any target detection application, there are two principal types of errors: missed detections

(MDs) and false alarms (FAs). The general objective is to reduce both types of errors as much

as possible. In practice, some tradeoff is made between the MD rate and the FA rate. Currently,

the user is asked to choose between the responses MD (too many missed detections), FA (too

many false alarms) and OK (results are satisfactory). If errors of both kinds are simultaneously

present, as is usually the case, the user selects the error which is more significant. If the

response is not OK, the user is further queried about the type of MD or FA, as shown in

Fig. 25. Currently, MDs due to the following three situations are recognized: vehicles too large

or too small, vehicles have low contrast, vehicles too tightly packed. Four types of FAs are

handled: multiple hits from the same vehicle, false positives at control lines (the lines used to

demarcate the different parking spots), puddles/oil stains mistaken for vehicles, and FAs due

to pavement texture. Extensive testing on a diverse set of aerial images will enable us to create

a richer taxonomy of errors.

26

evaluation

poor insufficient too small/
contrast spacing too large

pavement
texture

puddles and
oil stains

control
lines

multiple
hits

Figure 25: User evaluation of the UMD vehicle detector. The user looks at the result, and

judges if there are missed detections (MDs) or false alarms (FAs), and if so, of what type.

The repair mechanism has a nested structure, and is interleaved with the evaluation mech-

anism. For every allowed error subtype there are one or more repair strategies. The repair

strategies are tried one after the other until either the error disappears or the strategies are

exhausted. An example is shown in Figure 26. The first run of the system produces the result

shown in the first box in the second row. Evaluation rules are fired, asking the user to judge

this result. The user indicates that there seem to be false alarms, possibly due to control lines

on the parking area. This triggers repair rules, which successively transmit this judgment to

the operator "verify-hypotheses" and then to "check-texture", which is responsible for filtering

out such false detections. An adjustment rule in "check-texture" is then applied, adjusting

a parameter "contrast-threshold" from 5 to 15. This parameter is the minimum allowable

difference in mean grey level between a candidate vehicle and its background. Raising this

threshold eliminates the false alarms caused by the control lines, producing the result shown in

the first box of the third row. The user evaluates this result again, judging it to have too many

missed detections, possibly due to the vehicles being too close together. This judgment triggers

a sequence of repair and adjustment rules, resulting in the decrement of a parameter which

specifies the factor by which vehicles have to be scaled before deciding that they overlap. This

allows candidate vehicles spaced closer together to be judged as non-overlapping, and hence

acceptable. The final result, which the user judges to be "OK", is shown in the first box on the

last row.

27

0>

CO

CO c
o
o
CB

c
o

!•
— co CD
to o^

!&I

■S&8
8) Q. «a
aj a. CD

.Q CO CO

CO
o
CO
1»
CD
Q.
O
-nxj
Cl) o
u 3
CD O
öS

®CD

2
O
J=-
ffi'd) CD C

if? (0 v .
^o O

SS«
"*-"»- p
AS*
CD C0TJ

IP CO ° CD
O-CDb

H o.«e

3

CD

I
J*
o
a> sz

L. CD

S3
&8
8 x QLCD
o I
CD g
iE.fi

«co-

f§o
C!L?2
s-gq
CD CDi-

5-SE
•.IS

CD 0 s—

§ ® 58 CO Q.C0

Q.CD O

iE'S.fi

Q.

£g
ffl CO

?g
CD £
£ CD
oT-o
- .* CD
»ut;
ösg

ölig
0)

o

■o
.2
a a
(0
(0 a>

0)

o
a>
E
O
CO

e
o

-■s
a

i
o

43
u

__„ CO
"to co*8
£ 5S«
O :§£

"III.
§?

-Si • ^ ~
■O CD CD

a. » CD
o Js CL
•- « 6"
egj.

£ fcfc

•a a

CD

0) eg

151 f si
I fit»

> S*

CD
w
3

I

■o

o
4=
CO

£

CO

s
2
& o

■M o
41

ft3
U. co
S> CD

CD fc

s-.S

S .2

111 B-ig .? o P 's *» ~

■3 CO CD
C CD «
«• C CO
B CD CD
S£c3

3

Q

■is
£ °

si«
•o >
0)

o
!E
CD >
O
B
a
•a
u o

I" 55
«Z g>cD
2 *&
E CD fc
± €5

«0 o
CD CO
co a
V CO

■c % ** c o CD a
a Q a
> *: ~

■c ^ a>

2 « o
> CD CD

2 O
CD
>
o
I

.*
o
CD
J=

(0
9>

I
Q.
a

JLSg
5 S$

CD

2§ o

O
E:
co

o

1
u

"3 a

CD C
-C O
H~.C

P
«'S
^2 c «

2 *- CD

U

3"°

(0
a> E

co iS
*■ ca

2<o

U

(0 c^^
c a> n>

m
is

se
d

et
ec

tio

ns
uf

fic

sp
ac

in

■o i3-

o

(0
«D

■B
(0

[131
1 I • h

28

7 Conclusions and future work

This paper has presented a methodology for adding flexibility and convenience to an existing

vision system by integrating the vision specialist's knowledge into it using a knowledge-based

architecture. The proposed methodology assumes that the vision system has a non-empty

operating region at which it yields satisfactory results. It imitates the strategy of the specialist

in reaching a point in this region from a given or default setting. The system can thus self-tune

in response to the user's evaluations. This type of system will be of immense value in making

the full power of vision algorithms available to end-users.

Our future work will focus on the following areas:

Detecting failure: Obviously, if no combination of the tuning parameters can yield sat-

isfactory results, neither the specialist nor the self-tuning framework will have any chance of

succeeding. On the other hand, if the self-tuning strategy does not capture the full complexity

of the specialist's reasoning, it may fail in difficult cases even if a solution exists. Detecting this

failure may not always be easy for the user, since the self-tuning strategy may have loops and

other complex chains of reasoning. If the system does not solve the problem in a reasonable

amount of time, it should be considered as having failed. Experimentation on large and diverse

data sets and constant refinement of the knowledge base will ensure that such failures do not

occur too often.

Validity of the model: Closely related to the problem of detecting failures is the validation

of the basic self-tuning model itself. This model assumes that based on certain "symptoms"

of the result, a diagnosis can be made as to which parameter (or algorithm) is at fault. As

in [7], the vision system is assumed to possess a "Markovian" property, which allows order-

independent and mutually independent parameter tuning. The problem of parameter tuning

is essentially ill-posed: there may be many more parameters than symptoms, and a one-to-one

mapping may not be easy to establish in all cases. A more complex problem-solving model that

takes this into account needs to be investigated.

Specific evaluations: Currently, result evaluations are in the form of general remarks about

the results obtained, and not about specific portions or objects of the output. Our future work

will incorporate some mechanisms for handling specific evaluations. The challenge is in making

these mechanisms as application-independent as possible.

Quantitative performance measures: There has been some recent work on statistical

performance characterization of vision algorithms (e.g. [10]). Integrating this kind of tool into

a self-tuning vision architecture, although a challenging task, is a promising area of research,

because it would add a quantitative dimension to the result evaluation process.

29

Learning: Machine learning principles can be applied to exploit the wealth of information

accumulated over a period of time as the vision system is tested on different data sets [19].

The current implementation of the LAMA platform does not make the operational history

of the self-tuning process directly available to the system developer. The availability of this

information will enhance machine learning capabilities, and will also be useful in performance
analysis.

Other applications: The vehicle detection application will be upgraded to use a version

capable of detecting vehicles of all sizes and orientations. We propose to test the methodology

on other candidate problems such as multisensor registration, and to validate it using large and
diverse data sets.

Acknowledgments

We would like to thank Shyam Kuttikkad, Vasudev Parameswaran, Monique Thonnat, John

van den Eist, Hany Tolba and Azriel Rosenfeld for their contributions to the work reported

here. We would also like to thank Les Novak of MIT Lincoln Laboratories for providing the

SAR image used in one of the examples.

References

[1] R. Bodington, "A software environment for the automatic configuration of inspection sys-
tems," in First International Workshop on Knowledge-Based Systems for the (re) Use of
Program Libraries (INRIA, Sophia Antipolis, France), Nov. 1995.

[2] P. Burlina, V. Parameswaran, and R. Chellappa, "Sensitivity analysis and learning strate-
gies for context-based detection algorithms," in DARPA Image Understanding Workshop
(New Orleans, LA), pp. 577-583, May 1997.

[3] R. Chellappa, X. Zhang, P. Burlina, C. L. Lin, Q. Zheng, L. S. Davis, and A. Rosenfeld,
"An integrated system for site-model supported monitoring of transportation activities in
aerial images," in DARPA Image Understanding Workshop (Palm Springs, CA), pp. 275-
304, Feb. 1996.

[4] S. A. Chien, "Using AI planning techniques to automatically generate image processing
procedures: A preliminary report," in Second International Conference on AI Planning
Systems (Chicago, IL), pp. 219-224, June 1994.

[5] V. Clement and M. Thonnat, "A knowledge-based approach to the integration of image
processing procedures," CVGIP: Image Understanding, Vol. 57, pp. 166-184, 1993.

[6] D. Crevier and R. Lepage, "Knowledge-based image understanding systems: A survey,"
Computer Vision and Image Understanding, Vol. 67, pp. 161-185, 1997.

[7] B. Draper, "Modeling object recognition as a Markov decision process," in Proceedings of
the IAPR International Conference on Pattern Recognition (Vienna, Austria), pp. 95-99,
Aug. 1996.

30

[8] A. R. Hanson and E. M. Riseman, "VISIONS: A computer system for interpreting scenes,"
in Computer Vision Systems (A. Hanson and E. Riseman, eds.), San Francisco, CA: Aca-
demic Press, 1978.

[9] S. Kuttikkad and R. Chellappa, "Building wide area 2D site models from high resolution
polarimetric synthetic aperture radar images," Tech. Rep. CAR-TR-776, Computer Vision
Laboratory, University of Maryland, College Park, MD 20742-3275, June 1995.

[10] X. Liu, T. Kanungo, and R. M. Haralick, "Statistical validation of computer vision soft-
ware," in DARPA Image Understanding Workshop (Palm Springs, CA), pp. 1533-1540,
Feb. 1996.

[11] T. Matsuyama, "Expert systems for image processing: Knowledge-based composition of
image analysis processes," Computer Vision, Graphics and Image Processing, Vol. 48,
pp. 22-49, 1989.

[12] C. C. McConnell and D. T. Lawton, "IU software environments," in DARPA Image Un-
derstanding Workshop, pp. 666-676, Apr. 1988.

[13] S. Moisan, R. Vincent, J. van den Eist, and F. van Harmelen, "Towards an intelligent failure
handling mechanims in program supervision," in Proceedings of KBUP'95, pp. 110-118,
1995. URL: http://www.inria.fr/orion/.

[14] A. M. Nazif and M. D. Levine, "Low-level image segmentation: An expert system," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, pp. 555-577, 1984.

[15] T. Strat, "Employing contextual information in computer vision," in DARPA Image Un-
derstanding Workshop (Washington, DC), pp. 217-229, Apr. 1993.

[16] T. Strat and M. A. Fischler, "Context-based vision: Recognizing objects using both 2D and
3D imagery," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13,
pp.1050-1065, 1991.

[17] M. Thonnat and S. Moisan, "Knowledge-based systems for program supervision," in Pro-
ceedings of First International Workshop on Knowledge-Based Systems for the (re) Use of
Program Libraries (KBUP'95), 1995. URL: http://www.inria.fr/orion/.

[18] T. Toriu, H. Iwase, and M. Yoshida, "An expert system for image processing," Fujitsu Sei.
Tech. Journal, Vol. 23.2, pp. 111-118, 1987.

[19] R. Vincent, S. Moisan, and M. Thonnat, "Learning as a means to refine a knowledge-based
system," in Proceedings of Third Japanese Knowledge Acquisition for Knowledge-Based
Systems Workshop (Hatoyama, Japan), pp., 17-31, Nov. 1994.

[20] R. Vincent, S. Moisan, and M. Thonnat, "A library for program supervision engines," Tech.
Rep. 3011,1.N.R.I.A., Sophia Antipolis, France, 1996. URL: http://www.inria.fr/orion/.

[21] R. Vincent and M. Thonnat, "Planning, executing, controlling and replanning for IP
program library," in Proceedings of IASTED International Conference on Artificial In-
telligence and Soft Computing (ASC'97) (Banff, Canada), July-August 1997. URL:
http://www.inria.fr/orion/Articles/ASC97.html.

31

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

7W reoortina burden for tn« collection of information i» «»mated (0 average > sour oef response, including the time for reviewing instruction«, searcmng emting data sources.
Str^rTisd ™.nta.mng the aau needed, and completing and reviewing the collection of information Send comment» regarding thi» burden estimate or »r^r other ?*5*5l?fth"
SlearorTo^nformation^ncluding suggestions for reducing this burden, to Wajh.ngton Headquarter» Service». Oirectorat« for '"'Wm«'on °c«ratiom and Reports. U15 Jefferson
Srm i^hwaV S^e 1204. AriingtonTvA 22202-4302. and tt> the Office of Management and Budget. Paperwork Reduction PrO)e« (0704-0188). Washmgton, DC 20SO3.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1997
3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE

Knowledge-Based Control of Vision Systems

6. AUTH0R(S)

Chandra Shekhar, Sabine Moisan, Regis Vincent, Philippe Burlina
and Rama Chellappa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Center for Automation Research
University of Maryland
College Park, MD 20742-3275

9l SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

Office of Naval Research
800 North Quincy Street, Arlington, VA 22217-5660

Advanced Research Projects Agency
3701 North Fairfax Drive, Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

N00014-95-1-0521

8. PERFORMING ORGANIZATION
REPORT NUMBER

CAR-TR-867
CS-TR-3824

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABIUTY STATEMENT

Approved for public release.
Distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We propose a framework for the development of vision systems that incorporate, along with the executable programs,
the syntactic, semantic and strategic knowledge required to obtain optimal performance. In this approach, the user
provides the input data, specifies the vision task to be performed, and then provides feedback in the form of
qualitative evaluations of the result(s) obtained. These assessments are interpreted in a knowledge-based framework
to automatically select algorithms and set parameters until results of the desired quality are obtained. In this
manner the vision system is given the capacity to tune itself for optimal performance. A system thus trained on
a small subset of the input data can then be run autonomously on the remaining data in a batch mode. This
approach is illustrated on two real applications, analysis of Synthetic Aperture Radar (SAR) imagery, and detection
of vehicles in aerial photographs.

14. SUBJECT TERMS

Knowledge-based vision, Control of vision systems, Self-tuning, SAR imagery,
Vehicle detection

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

NSN 754O-O1-28O-S500

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

33
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. «9-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 23«

The Report Documentation Page (RDP) is used in announcing and cataloging reports It is important
that this information be consistent with the rest of the report, particularly the cover and title paae
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one voiume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s). task
number(s), and work unit number(s). Use the
following labels:

C -
G -
PE -

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in ail capitals (e g
NOFORN, REL, ITAR).

DOD

DOE
NASA
NT1S

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NHB 2200.2.
Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NT1S

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Paoes. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

